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Building embodied AI systems that can follow arbitrary language instructions in any 3D environment is
a key challenge for creating general AI. Accomplishing this goal requires learning to ground language
in perception and embodied actions, in order to accomplish complex tasks. The Scalable, Instructable,
Multiworld Agent (SIMA) project tackles this by training agents to follow free-form instructions across
a diverse range of virtual 3D environments, including curated research environments as well as open-
ended, commercial video games. Our goal is to develop an instructable agent that can accomplish
anything a human can do in any simulated 3D environment. Our approach focuses on language-driven
generality while imposing minimal assumptions. Our agents interact with environments in real-time
using a generic, human-like interface: the inputs are image observations and language instructions
and the outputs are keyboard-and-mouse actions. This general approach is challenging, but it allows
agents to ground language across many visually complex and semantically rich environments while also
allowing us to readily run agents in new environments. In this paper we describe our motivation and
goal, the initial progress we have made, and promising preliminary results on several diverse research
environments and a variety of commercial video games.
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1. Introduction

Despite the impressive capabilities of large language models (Brown et al., 2020; Hoffmann et al.,
2022; OpenAI, 2023; Anil et al., 2023; Gemini Team et al., 2023), connecting them to the embodied
world that we inhabit remains challenging. Modern AI can write computer programs (Li et al., 2022)
or play chess at super-human level (Silver et al., 2018), but the ability of AI to perceive and act in the
world remains far below human level. Competence in language alone is easier for AI than grounded
perception and behavior, underscoring the well-known paradox that what is easier for AI is harder for
humans, and vice versa (Moravec, 1988).
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Figure 1 | Overview of SIMA. In SIMA, we collect a large and diverse dataset of gameplay from both
curated research environments and commercial video games. This dataset is used to train agents to
follow open-ended language instructions via pixel inputs and keyboard-and-mouse action outputs.
Agents are then evaluated in terms of their behavior across a broad range of skills.

Yet, language is most useful in the abstractions it conveys about the world. Language abstractions
can enable efficient learning and generalization (Hill et al., 2020; Colas et al., 2020; Lampinen
et al., 2022; Tam et al., 2022; Hu and Clune, 2023). Once learned, language can unlock planning,
reasoning (e.g., Huang et al., 2022; Brohan et al., 2023b; Driess et al., 2023; Kim et al., 2023), and
communication (Zeng et al., 2022) about grounded situations and tasks. In turn, grounding language
in rich environments can make a system’s understanding of the language itself more systematic and
generalizable (Hill et al., 2019). Thus, several questions emerge: How can we bridge the divide
between the symbols of language and their external referents (cf., Harnad, 1990)? How can we
connect the abstractions and generality afforded by language to grounded perception and action, and
how can we do so in a safe and scalable way?

Here, we draw inspiration from these questions—and the prior and concurrent research projects
that have addressed them (e.g., Hermann et al., 2017; Abramson et al., 2020; Brohan et al., 2023a,b;
Driess et al., 2023; Wang et al., 2023b; Tan et al., 2024)—to attempt to connect language to grounded
behavior at scale. Bridging this gap is a core challenge for developing general embodied AI.

The Scalable, Instructable, Multiworld Agent (SIMA) project aims to build a system that can
follow arbitrary language instructions to act in any virtual 3D environment via keyboard-and-mouse
actions—from custom-built research environments to a broad range of commercial video games.
There is a long history of research in creating agents that can interact with video games or simulated
3D environments (e.g., Mnih et al., 2015; Berner et al., 2019; Vinyals et al., 2019; Baker et al., 2022)
and even follow language instructions in a limited range of environments (e.g., Abramson et al., 2020;
Lifshitz et al., 2023). In SIMA, however, we are drawing inspiration from the lesson of large language
models that training on a broad distribution of data is the most effective way to make progress in
general AI (e.g., Brown et al., 2020; Hoffmann et al., 2022; OpenAI, 2023; Anil et al., 2023; Gemini
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Team et al., 2023). Thus, in contrast to prior works (e.g., Abramson et al., 2020; Vinyals et al., 2019;
Berner et al., 2019; Lifshitz et al., 2023), we are attempting to tackle this problem across many
simulated environments, in the most general and scalable way possible, by making few assumptions
beyond interacting with the environments in the same way as humans do.

To this end, have made a number of design decisions that make our approach more general, but
also more challenging:

• We incorporate many rich, visually complex, open-ended video games containing hundreds of
objects in a scene and a large number of possible interactions.

• These environments are asynchronous (e.g., Berner et al., 2019; Vinyals et al., 2019); unlike
many research environments, they do not stop and wait while the agent computes its next
action.

• Each instance of a commercial video game needs to run on a GPU; thus, we cannot run hundreds
or thousands of actors per game per experiment as often done in RL (cf., Espeholt et al., 2018).

• Agents receive the same screen observations that a human playing the game would without
access to internal game state, rewards, or any other privileged information (cf., Berner et al.,
2019; Vinyals et al., 2019).

• To interact with the environments, agents use the same keyboard-and-mouse controls that
humans do (e.g., Baker et al., 2022; Humphreys et al., 2022; Lifshitz et al., 2023), rather than
handcrafted action spaces or high-level APIs.

• We focus on following language instructions (e.g., Abramson et al., 2020) rather than simply
playing the games to maximize a win-rate or generating plausible behavior (cf., Berner et al.,
2019; Vinyals et al., 2019).

• We train and test our agents using open-ended natural language, rather than simplified gram-
mars or command sets (e.g., Abramson et al., 2020).

These design choices make the learning problem harder, but their generality makes expanding
to new environments easier: agents use the same interface across environments without requiring
a custom design of control and observation spaces for each new game. Furthermore, since the
agent-environment interface is human compatible, it allows agents the potential to achieve anything
that a human could, and allows direct imitation learning from human behavior. This general interface
from language instructions to embodied behavior can also enable agents to transfer previously learned
skills zero-shot to never-before-seen games. Doing research in generic virtual environments allows
us to test our agents in a broad and challenging range of situations—where the lessons learned are
likely to be more applicable to real-world applications with visually rich perception and control such
as robotics—without the risks and costs of real-world testing: if the agent crashes a spaceship in a
video game, we can just restart the game.

In the SIMA project thus far, we have created an agent that performs short-horizon tasks based on
language instructions produced by a user; though instructions could also be produced by a language
model (e.g., Jiang et al., 2019; Driess et al., 2023; Wang et al., 2023b; Hu et al., 2023; Ajay et al.,
2023). We have a portfolio of over ten 3D environments, consisting of research environments and
commercial video games. For research environments we evaluate agents using the ground truth state,
but commercial video games are not designed to report on the completion of arbitrary language tasks.
We have therefore developed a variety of methods for evaluation in video games, including using
optical character recognition (OCR) to detect onscreen text describing task completion, and using
human evaluation of recorded videos of agent behavior. In the rest of this tech report, we describe
the high-level approach (illustrated in Figure 1) and our initial progress towards the ultimate goal
of SIMA: developing an instructable agent that can accomplish anything a human can do in any
simulated 3D environment.
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2. Related work

SIMA builds on a long history of using games as a platform for AI research. For example, backgammon
provided the initial proving ground for early deep reinforcement learning methods (Tesauro et al.,
1995), and later works have achieved superhuman performance even in complex board games like
Go (Silver et al., 2016, 2018).

Video games Over the last ten years, video games have provided an increasingly important setting
for research focused on embodied agents that perform visuomotor control in rich environments. Re-
searchers have used many video game environments, covering a wide spectrum from Atari (Bellemare
et al., 2013) to DoTA (Berner et al., 2019) and StarCraft II (Vinyals et al., 2019). In SIMA, however,
we restrict our focus to games that resemble 3D physical embodiment most closely, in particular games
where the player interacts with a 3D world from a first or over-the-shoulder pseudo-first-person view.
This focus excludes many of the games which have previously been used for research, such as the
ones listed above. There has however been notable interest in first-person embodied video games as
a platform for AI research (Johnson et al., 2016; Tessler et al., 2017; Guss et al., 2019; Pearce and
Zhu, 2022; Hafner et al., 2023; Durante et al., 2024; Tan et al., 2024). These video game AI projects
have driven the development of many innovative techniques, e.g., learning from videos by annotating
them with estimated player keyboard-and-mouse actions using inverse dynamics models (Pearce and
Zhu, 2022; Baker et al., 2022). More recently, games that offer API access to the environment have
served as a platform for grounding large language models (Wang et al., 2023a), and some works
have even considered grounding a language model in a game through direct perception and action of
a lower-level controller (Wang et al., 2023b). Instead of focusing on a single game or environment,
however, SIMA considers a range of diverse games to train agents on a larger variety of content.

Research environments Other works have focused on custom, controlled environments designed
for research. Many of these environments focus on particular domains of real-world knowledge. For
example, AI2-THOR (Kolve et al., 2017), VirtualHome (Puig et al., 2018), ProcTHOR (Deitke et al.,
2022), AI Habitat (Savva et al., 2019; Szot et al., 2021; Puig et al., 2023), ALFRED (Shridhar et al.,
2020), and Behavior (Srivastava et al., 2021) simulate embodied agents behaving in naturalistic
rendered scenes. CARLA (Dosovitskiy et al., 2017) provides a simulator for autonomous driving.
MuJoCo (Todorov et al., 2012), PyBullet (Coumans and Bai, 2016–2023), and Isaac Gym (Makoviy-
chuk et al., 2021) provide high quality physics simulators for learning low-level control and are used
by benchmarks for robotic manipulation such as Meta-World (Yu et al., 2020) and Ravens (Zeng
et al., 2021). Albrecht et al. (2022) propose a unified environment encompassing a variety of skills
afforded through ecologically-inspired interactions. The Playhouse (Abramson et al., 2020; DeepMind
Interactive Agents Team et al., 2021; Abramson et al., 2022a) and WorldLab (e.g., Gulcehre et al.,
2019) environments are built using Unity (see Ward et al., 2020). Open Ended Learning Team et al.
(2021) and Adaptive Agent Team et al. (2023) also use Unity to instantiate a broad distribution of
procedurally generated tasks with shared underlying principles. For the results in this work, we also
use Playhouse, WorldLab, and ProcTHOR. In addition, we introduce a new environment, called the
Construction Lab.

Robotics Robotics is a key area for research in embodied intelligence. A variety of robotics projects
have used simulations for training, to transfer efficiently to real-world robotic deployments (Höfer
et al., 2021), though generally within a single, constrained setting. More recent work has focused
on environment-generality, including scaling robotic learning datasets across multiple tasks and
embodiments (Brohan et al., 2022, 2023a; Stone et al., 2023; Padalkar et al., 2023)—thereby
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creating Vision-Language-Action (VLA) models (Brohan et al., 2023a), similar to the SIMA agent. The
latter challenge of generalizing or quickly adapting to new embodiments has some parallels to acting
in a new 3D environment or computer game where the mechanics are different. Moreover, a variety
of recent works have applied pretrained (vision-)language models as a planner for a lower-level
instruction-conditional robotic control policy (Brohan et al., 2023b; Driess et al., 2023; Vemprala
et al., 2023; Hu et al., 2023). Our approach shares a similar philosophy to the many works that
attempt to ground language via robotics. SIMA, however, avoids the additional challenges of costly
hardware requirements, resource-intensive data collection, and the practical limitations on diversity
of real-world evaluation settings. Instead, SIMA makes progress towards embodied AI by leveraging
many simulated environments and commercial video games to obtain the sufficient breadth and
richness that we conjecture to be necessary for effectively scaling embodied agents—with the hope that
lessons learned (and possibly even the agents themselves) will be applicable to robotic embodiments
in the future.

Learning environment models Some works attempt to leverage learned models of environments
to train agents in these learned simulations (e.g., Ha and Schmidhuber, 2018; Hafner et al., 2020,
2023; Yang et al., 2023). These methods, however, tend to be difficult to scale to diverse sets of
visually complex environments that need to be self-consistent across long periods of time. Neverthe-
less, learning imperfect models can still be valuable. In SIMA, we build on video models (Villegas
et al., 2022), which we fine-tune on game environments. However, we only use the internal state
representations of the video models rather than explicit rollouts—in keeping with other approaches
that use generative modeling as an objective function for learning state representations (e.g., Gregor
et al., 2019; Zolna et al., 2024).

Grounding language Another stream of work—overlapping with those above—has focused on
grounding language in simulated 3D environments, through agents that are trained in controlled
settings with semi-natural synthetic language (Hermann et al., 2017; Hill et al., 2019), or by imitating
human interactions in a virtual house to learn a broader ability to follow natural language instructions
(Abramson et al., 2020; DeepMind Interactive Agents Team et al., 2021; Abramson et al., 2022a,b).
Moreover, a range of recent works develop agents that connect language to embodied action, generally
as part of a hierarchy controlled by a language model (Jiang et al., 2019; Driess et al., 2023; Wang
et al., 2023b; Hu et al., 2023; Ajay et al., 2023). We likewise draw inspiration from the idea that
language is an ideal interface for directing an agent, but extend our scope beyond the limited
affordances of a single controlled environment. In that sense, SIMA overlaps more with several recent
works (Reed et al., 2022; Huang et al., 2023; Durante et al., 2024) that also explore training a single
model to perform a broad range of tasks involving actions, vision, and language. However, SIMA
is distinct in our focus on simultaneously (1) taking a language-first perspective, with all training
experiences being language-driven; (2) adopting a unified, human-like interface across environments
with language and vision to keyboard-and-mouse control; and (3) exploring a broad range of visually
rich, diverse, and human-compatible environments that afford a wide range of complex skills.

Language supports grounded learning, and grounded learning supports language A key
motivation of SIMA is the idea that learning language and learning about environments are mutually
reinforcing. A variety of studies have found that even when language is not necessary for solving a task,
learning language can help agents to learn generalizable representations and abstractions, or to learn
more efficiently. Language abstractions can accelerate grounded learning, for example accelerating
novelty-based exploration in reinforcement learning by providing better state abstractions (Tam et al.,
2022; Mu et al., 2022), or composing known goals into new ones (Colas et al., 2020; Nottingham
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et al., 2023). Moreover, learning to predict natural-language explanations (Lampinen et al., 2022),
descriptions (Kumar et al., 2022), or plans (Hu and Clune, 2023) can help agents to learn more
efficiently, and to generalize better out of distribution. Language may be a powerful tool for shaping
agent capabilities (Colas et al., 2022).

Conversely, richly grounded learning can also support language learning. Since human language
use is deeply integrated with our understanding of grounded situations (McClelland et al., 2020),
understanding the subtleties of human language will likely benefit from this grounding. Beyond
this theoretical argument, empirical evidence shows that grounding can support even fundamental
kinds of generalization—Hill et al. (2019) show that agents grounded in richer, more-embodied
environments exhibit more systematic compositional generalization. These findings motivate the
possibility that learning both language and its grounding will not only improve grounded actions, but
improve a system’s knowledge of language itself.

3. Approach

Many overlapping areas of previous and concurrent work share some of our philosophy, motivations,
and approaches. What distinguishes the SIMA project is our focus on language-conditional behavior
across a diverse range of visually and mechanically complex simulated environments that afford a
rich set of skills. In this section, we provide a high-level overview of our approach: our environments,
data, agents, and evaluations.

3.1. Environments

SIMA aims to ground language across many rich 3D environments (Figure 2). Thus, we selected 3D
embodied environments that offer a broad range of open-ended interactions—such environments
afford the possibility of rich and deep language interactions. We focus on environments that are either
in a) first-person or b) third-person with the camera over the player’s shoulder. To achieve diversity
and depth of experience, we use a variety of commercial video games, as well as several environments
created specifically for agent research. Each type of environment offers distinct advantages, ranging
from open-ended diverse experiences to targeted assessments of agent skills. We have deliberately
sought to build a portfolio of games that covers a wide range of settings—from mundane tasks in
semi-realistic environments, to acting as a mischevious goat in a world with exaggerated physics, to
exploring mythological worlds or science-fiction universes. Below, we briefly describe the environments
we have used in SIMA thus far by category and in alphabetical order.

3.1.1. Commercial video games

Commercial video games offer exciting, open-ended worlds full of visual richness and the potential for
complex interactions. In SIMA, we have partnered with games developers whose games we used for
training agents, and we are continuing to develop relationships with new developers—for our full list
of current partners, please see our Acknowledgements section. We focus on a variety of open-world
or sandbox games that contain diverse skills, while avoiding games containing harmful content such
as extreme violence or biases. We have also sought a broad diversity of worlds and stories, but with a
focus on games that exhibit a depth of interesting mechanics. Accordingly, games from our portfolio
offer a wide range of distinct challenges in perception and action, from flying a spaceship to mining
minerals or crafting armor, as well as more common core features, such as navigation or gathering
resources. Games also often include interactions that extend beyond the skillset of typical embodied
research environments, such as menu use and interfaces more similar to those faced in computer
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control benchmarks (e.g., Humphreys et al., 2022; Koh et al., 2024). For the results in this report, we
focus on single-player interactions within these games.

We run instances of each game in a secure Google Cloud environment, using hardware accelerated
rendering to a virtual display. This display is streamed to a browser for human gameplay, or to a
remote agent client process during evaluation. To instantiate repeatable evaluation or data collection
scenarios within each game, we build datasets of save-game files from expert play, and use scripted
processes to automate the process of installing game-files, booting the game, navigating its main
menu, and loading a specific save-game.

We now provide a brief description of the games we used.

Goat Simulator 3: A third-person game where the player is a goat in a world with exaggerated
physics. The player can complete quests, most of which involve wreaking havoc. The goat is able to
lick, headbutt, climb, drive, equip a wide range of visual and functional items, and perform various
other actions. Throughout the course of the game, the goat unlocks new abilities, such as the ability
to fly.

Hydroneer: A first-person mining and base building sandbox where the player is tasked with
digging for gold and other resources to turn a profit and enhance their mining operation. To do
this, they must build and upgrade their set-ups and increase the complexity and levels of automation
until they have a fully automated mining system. Players can also complete quests from non-player
characters to craft bespoke objects and gain extra money. Hydroneer requires careful planning and
managing of resources.

No Man’s Sky: A first- or third-person survival game where the player seeks to explore a galaxy
full of procedurally-generated planets. This involves flying between planets to gather resources, trade,
build bases, and craft items that are needed to upgrade their equipment and spaceship while surviving
a hazardous environment. No Man’s Sky includes a large amount of visual diversity—which poses
important challenges for agent perception—and rich interactions and skills.

Satisfactory: A first-person, open-world exploration and factory building game, in which players
attempt to build a space elevator on an alien planet. This requires building increasingly complex
production chains to extract natural resources and convert them into industrial goods, tools, and
structures—whilst navigating increasingly hostile areas of a large open environment.

Teardown: A first-person, sandbox–puzzle game in a fully destructible voxel world where players
are tasked with completing heists to gain money, acquiring better tools, and undertaking even more
high-risk heists. Each heist is a unique scenario in one of a variety of locations where players must
assess the situation, plan the execution of their mission, avoid triggering alarms, and escape before a
timer expires. Teardown involves planning and using the environment to one’s advantage to complete
the tasks with precision and speed.

Valheim: A third-person survival and sandbox game in a world inspired by Norse mythology.
Players must explore various biomes, gather resources, hunt animals, build shelter, craft equipment,
sail the oceans and defeat mythological monsters to advance in the game—while surviving challenges
like hunger and cold.

Wobbly Life: A third-person, open-world sandbox game where the player can explore the world,
unlock secrets, and complete various jobs to earn money and buy items, leading up to buying their
own house. They must complete these jobs whilst contending with the rag-doll physics of their
characters and competing against the clock. The jobs require timing, planning, and precision to be
completed. The world is extensive and varied, with a diverse range of interactive objects.
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Figure 2 | Environments. We use over ten 3D environments in SIMA, consisting of commercial video
games and research environments. The diversity of these environments is seen in their wide range of
visual observations and environmental affordances. Yet, because these are all 3D environments, basic
aspects of 3D embodied interaction, such as navigation, are shared. Commercial video games offer a
higher degree of rich interactions and visual fidelity, while research environments serve as a useful
testbed for probing agent capabilities.

3.1.2. Research environments

In contrast to commercial video games, AI research environments are typically more controllable, of-
fering the ability to instill and carefully assess particular skills, and more rapid and reliable evaluations
of task completion. Unlike many of the games in our portfolio, several of these research environments
also tend to feature more real-world analogous—if still simplified—physical interactions.

We have drawn on several prior research environments and developed a new environment—the
Construction Lab—that incorporates important challenges which were not otherwise well-captured
by our other environments.

Construction Lab: A new research environment where agents need to build novel items and
sculptures from interconnecting building blocks, including ramps to climb, bridges to cross, and
dynamic contraptions. Construction Lab focuses on cognitive capabilities such as object manipulation
and an intuitive understanding of the physical world.

Playhouse: An environment used in various prior works (Abramson et al., 2020; DeepMind
Interactive Agents Team et al., 2021; Abramson et al., 2022a), consisting of a procedurally-generated
house environment with various objects. We have augmented this environment with improved
graphics and richer interactions, including skills like cooking or painting.

ProcTHOR: An environment consisting of procedurally-generated rooms with realistic contents,
such as offices and libraries, introduced by Deitke et al. (2022). Although benchmark task sets exist
in this environment, prior works have not used keyboard and mouse actions for agents; thus we focus
on this environment primarily for data collection rather than evaluation.

WorldLab: An environment used in prior work (e.g., Gulcehre et al., 2019), further specialized
for testing embodied agents by using a limited set of intuitive mechanics, such as sensors and doors,
and relying primarily on the use of simulated physics on a range of objects.
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Figure 3 | Instructions Across SIMA Data. The SIMA dataset includes a broad range of text
instructions that can be roughly clustered into a hierarchy. Due to the common 3D embodied
nature of the environments that we consider, many generic tasks, such as navigation and object
manipulation, are present in multiple environments. Categories were derived from a data-driven
hierarchical clustering analysis of the human-generated text instructions within a fixed, pretrained
word embedding space. Note that the area of each cluster in the wheel in Figure 3 does not correspond
to the exact number of instructions from that cluster in the dataset.

3.2. Data

Our approach relies on training agents at scale via behavioral cloning, i.e., supervised learning of
the mapping from observations to actions on data generated by humans. Thus, a major focus of our
effort is on collecting and incorporating gameplay data from human experts. This includes videos,
language instructions and dialogue, recorded actions, and various annotations such as descriptions or
marks of success or failure. These data constitute a rich, multi-modal dataset of embodied interaction
within over 10 simulated environments, with more to come.1 Our data can be used to augment and
leverage existing training data (e.g., Abramson et al., 2020), or to fine-tune pretrained models to
endow them with more situated understanding. These datasets cover a broad range of instructed
tasks: Figure 3 shows instruction clusters derived from hierarchically clustering the text instructions
present in the data within a fixed, pretrained word embedding space.

Yet, collecting data at scale is not sufficient for training successful agents. Data quality processes
1Note: Due to a limited amount of collected data and/or evaluations, we present agent evaluation results (Section 4) on

a subset of 7 of these environments.
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Figure 4 | Setup & SIMA Agent Architecture. The SIMA agent receives language instructions from a
user and image observations from the environment, and maps them to keyboard-and-mouse actions.

are critical to ensuring an accurate and unconfounded mapping between language and behavior.
This presents various technical challenges. We take care to engineer our data collections, including
preprocessing and filtering the raw data, to highlight important skills and effectively train our agents.

Data collections We collect data using a variety of methods, including allowing single players
to freely play, and then annotating these trajectories with instructions post-hoc. We also perform
two-player setter-solver collections (Abramson et al., 2020; DeepMind Interactive Agents Team et al.,
2021), in which one player instructs another what to do in selected scenarios while sharing a single
player view in order to match the single-player collections. All our data collections were performed
with participants contracting with Google. The full details of our data collection protocols, including
compensation rates, were reviewed and approved by an independent Human Behavioral Research
Committee for ethics and privacy. All participants provided informed consent prior to completing
tasks and were reimbursed for their time.

Preprocessing, filtering, and weighting Before training, we perform a variety of offline prepro-
cessing steps, including resizing data for agent input, filtering out low-quality data using a variety of
heuristics, and remixing and weighting data across environments and collections to prioritize the
most effective learning experiences.

3.3. Agent

The SIMA agent maps visual observations and language instructions to keyboard-and-mouse actions
(Figure 4). Given the complexity of this undertaking—such as the high dimensionality of the input
and output spaces, and the breadth of possible instructions over long timescales—we predominantly
focus on training the agent to perform instructions that can be completed in less than approximately
10 seconds. Breaking tasks into simpler sub-tasks enables their reuse across different settings and
entirely different environments, given an appropriate sequence of instructions from the user.

Our agent architecture builds on prior related work (Abramson et al., 2020, 2022a), but with
various changes and adaptations to our more general goals. First, our agent incorporates not only
trained-from-scratch components, but also several pretrained models—including a model trained
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on fine-grained image-text alignment, SPARC (Bica et al., 2024), and a video prediction model,
Phenaki (Villegas et al., 2022)—which we further fine-tune on our data through behavioral cloning
and video prediction, respectively. In preliminary experiments, we found that these models offer
complementary benefits. Combining these pre-trained models with fine-tuning and from-scratch
training allows the agent to utilize internet-scale pretraining while still specializing to particular
aspects of the environments and the control tasks that it encounters.

More specifically, our agent (Figure 4) utilizes trained-from-scratch transformers that cross-attend
to the different pretrained vision components, the encoded language instruction, and a Transformer-XL
(Dai et al., 2019) that attends to past memory states to construct a state representation. The resulting
state representation is provided as input to a policy network that produces keyboard-and-mouse
actions for sequences of 8 actions. We train this agent with behavioral cloning, as well as an auxiliary
objective of predicting goal completion.

We use Classifier-Free Guidance (CFG; Ho and Salimans, 2022; Lifshitz et al., 2023) to improve
the language-conditionality of a trained agent when running it in an environment. CFG was originally
proposed for strengthening text-conditioning in diffusion models (Ho and Salimans, 2022), but has
also proven useful for similar purposes with language models (Sanchez et al., 2023) and language-
conditioned agents (Lifshitz et al., 2023). That is, we compute the policy, 𝜋, with and without
language conditioning, and shift the policy logits in the direction of the difference between the two:

𝜋𝐶𝐹𝐺 = 𝜋 (image, language) + 𝜆 (𝜋 (image, language) − 𝜋 (image, ·)) .

3.4. Evaluation methods

Our focus on generality in SIMA introduces challenges for evaluation. While research environments
may provide automated methods for assessing whether language-following tasks have been success-
fully completed, such success criteria may not be generally available. That is, language instructions
may not correspond to goal states recorded by an environment (e.g. a user might instruct “make a
pile of rocks to mark this spot” or “see if you can jump over this chasm”).

Evaluating agents in commercial video games poses substantial additional challenges. Video
game evaluations cannot rely on access to privileged information about the state of an environment.
Additionally, it is difficult to reinstate agents in precisely the same state in environments that are
not designed as reproducible benchmarks, and loading each task in commercial video games is
considerably slower and more costly than those in research environments. Achieving fast, stable, and
reliable evaluations comparable across environments is thus challenging. We therefore use a range of
distinct evaluation types that provide different trade-offs in efficiency, cost, accuracy, and coverage.

Moreover, ensuring that our evaluations truly assess language conditionality, rather than envi-
ronmental affordances, requires care. For instance, if a task contains a knife, a cutting board, and a
carrot, the agent may ascertain the goal (“cut the carrot on the cutting board”) without relying on the
language instruction. Thus, task settings need to afford a diversity of actions, ideally testing multiple
instructions from a single initial state, to properly evaluate whether the agent’s actions are driven by
language.

Action log-probabilities One simple approach is to evaluate agents based on their action predictions
on held-out evaluation data. However, consistent with prior findings (Abramson et al., 2022b; Baker
et al., 2022), we observed that agent action log-probabilities on evaluation data show at most a weak
correlation with agent performance beyond the most basic skills. Thus, online evaluations, in which
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the agent interacts with the environment, are needed to understand agent performance in detail.

Static visual input Similar to predicting actions on held-out data, we can provide the agent with a
static visual input and a language instruction to perform a particular valid action (e.g., “jump”) to
assess simple responses directly mapping to particular keyboard and/or mouse actions. We have used
evaluations of this form for our commercial video game environments, as they have the advantage of
not requiring actually loading a game. While these evaluations can be a useful early signal, they do
not reliably predict success on prolonged tasks.

Ground-truth Our internally-developed research environments (Construction Lab, Playhouse, and
WorldLab) are capable of providing ground-truth assessments of whether language-following tasks
have been successfully completed. These tasks can depend on the state of the agent (“move forward”)
and the surrounding environment (“lift the green cube”), as well as more complex interactions (“attach
a connector point to the top of the large block” or “use the knife to chop the carrots”). Such tasks enable
robust testing of a range of particular skills, with a highly reliable signal of task success. Moreover, we
design the task settings and evaluation to be strong tests of precision; for example, many tasks include
distractor objects, for which the episode is marked as an immediate failure if the agent interacts with
the distractors rather than the instruction target—even if the agent might have completed the actual
task later. We also include other types of assessments, such as instructing the agent to complete one
goal, and then interrupting with another goal to evaluate whether it switches appropriately—this
ensures that agents are sufficiently responsive to changes in commands. A subset of our research
environment tasks are used to provide a fast evaluation signal of agent progress during training.

Optical character recognition (OCR) Many of our commercial video game environments provide
on-screen text signalling the completion of tasks or quests, or even the results of lower-level actions
like collecting resources or entering certain areas of a game. By detecting on-screen text using OCR
in pre-defined evaluation scenarios, sometimes in combination with detecting specific keyboard-and-
mouse actions, we can cheaply assess whether the agent has successfully performed particular tasks.
This form of automated evaluation also avoids the subjectivity of human evaluations. We make use
of OCR evaluation in particular for two games, No Man’s Sky and Valheim, which both feature a
significant amount of on-screen text. In No Man’s Sky, for example, we have developed evaluation
tasks such as “mine carbon/salt/ferrite”, “use the analysis visor”, or “open the exosuit menu”. Similarly,
in Valheim we have tasks such as “collect wood/stone/raspberries”, “use the workbench”, or “cook food”.
In general, however, OCR evaluations are restricted to tasks that signal completion with game-specific
text rather than arbitrary tasks that can be specified with language instructions and which we would
expect a general agent to be able to solve. Other video games also have significantly less on-screen
text, which makes the range of behaviors that can be evaluated in these games with OCR very narrow.

Human evaluation In the many cases where we cannot automatically derive a signal of task success,
we turn to humans to provide this assessment. While this is our most general evaluation method, it is
also the slowest and most expensive. We use human judges who are game experts, i.e., they have
played these specific games for at least 16 hours, and often over the course of several weeks. We ask
them to review recorded agent videos, collecting multiple ratings of the same video from different
judges (typically 5) to ensure reliable assessments. We also encourage strict evaluations: we instruct
judges to mark an episode as a failure in cases where the agent performs irrelevant actions first, even
if the agent successfully completes the instructed task afterward.
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We curated our human-evaluation tasks by identifying a list of frequently-occurring verbs in
English, and combined it with a list of verbs that naturally emerged from gameplay and interactive
testing of our agents. We use this verb list as a foundation for our evaluations across all video game
environments. We assign each task (save state and instruction pair) to a single, most-representative
skill category (e.g. “craft items”), even though most tasks require a wide range of implicit skills to
succeed (e.g. crafting often requires menu use). The resulting evaluation set provides a long term
challenge for agent research that spans a wide range of difficulties—from simple game agnostic tasks
such as “turn left”, to ones testing specialized game knowledge “compare the crafting cost of antimatter
and antimatter housing”, to ones utilising broader semantic knowledge such as “take the pitchfork from
the person shoveling hay”. Grounding our evaluation framework in the distribution of natural language
allows us to test our agents in both common and adversarial scenarios, and thereby to measure our
progress towards our long-term goal of developing an instructable agent that can accomplish anything
a human can do in any simulated 3D environment.

In the results below (Section 4), we primarily report evaluation scores based on ground-truth
evaluations for research environments and combined OCR and human evaluations for commercial
video game environments. Across the 7 environments for which we have evaluations, we have a
total of 1,485 unique tasks, spanning a range of 9 skill categories, from movement (“go ahead”, “look
up”, “jump”) to navigation (“go to the HUB terminal”, “go to your ship”), resource gathering (“collect
carbon”, “get raspberries”), object management (“use the analysis visor”, “cut the potato”), and more.
(For reference, MineDojo (Fan et al., 2022), a related work investigating language-conditional agents
in MineCraft, used 1,581 unique tasks spanning 4 skill categories: survival, harvest, tech-free, and
combat). Given the diversity and coverage of our current evaluations, they provide a reasonable
assessment of the fundamental language-conditional skills that we expect from our agent. Yet, there
remains ongoing work in developing more scalable, general, and reliable evaluations, particularly as
we move toward more complex and open-ended tasks.

3.4.1. Latency mitigations

Our agent is evaluated in several environments that run in real-time, asynchronously to the agent. This
can pose challenges for the timely execution of agent-generated actions. Latencies or delays (Bratko
et al., 1995) are introduced by the computation of actions and the transmission of observations and
actions over the network. We account for this latency during behavioral cloning by predicting actions
that are offset in time relative to the visual input to the agent, and mirror this offset during evaluation
by appropriate buffering of observations and actions during neural-network inference. We additionally
minimize latencies with appropriate scheduling of action computation on TPU accelerators, on-device
caching of neural-network state across timesteps, and by careful choices of batch size and other
implementation details.

3.5. Responsibility

We follow a structured approach to responsible model development, to identify, measure, and manage
foreseeable ethics and safety challenges. These are informed by academic literature reviews, engaging
with internal ethics teams, and developing comprehensive ethical assessments that document key
risks with mitigation strategies. We ensure that our research projects uphold Google’s AI Principles.2
SIMA was carefully assessed and reviewed to ensure that its societal benefits outweigh the risks, and
that appropriate risk mitigations are incorporated.

2https://ai.google/responsibility/principles/
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No Man’s Sky – “go to the spaceship”

Valheim – “chop down a tree”

Goat Simulator 3 – “drive the car”

Satisfactory – “go to the HUB”

Teardown – “go through the gate”

Figure 5 | Agent Trajectories. The SIMA agent is capable of performing a range of language-instructed
tasks across diverse 3D virtual environments. Here, we provide several representative, visually salient
examples of the agent’s capabilities that demonstrate basic navigation and tool use skills.

Benefits SIMA is a cutting-edge research initiative which focuses on how to develop instructable
agents in simulated environments. This research presents interesting opportunities for the future
of humans and AI collaborating together; unlike LLMs, SIMA is able to both understand natural
language instructions and dynamic, interactive 3D environments. This presents a new paradigm for
working with AI agents, and the potential for exciting new immersive 3D experiences with AI. Finally,
simulated environments present a safer alternative for research compared to other AI deployments.

Risks As well as these benefits, we have reflected on potential risks associated with training on
video game data. These include risks associated with training an agent on games that include violent,
explicit or otherwise harmful behaviors. We have also reflected on the implications on representational
harms, as the agent may learn from stereotyped depictions or actions in game settings. Besides these
risks, there are also down stream risks associated with the future hypothetical deployments of SIMA,
through either intentional misuse or benign action.

Mitigations We have worked to ameliorate these risks through a holistic approach, including:

• Careful curation of content. We avoided a number of games that have scientifically interesting,
but violent environments. We also outlined behavioral “red-lines” with our ethics and safety
teams; games with content that violates these red-lines are not used.

• Continuous evaluations of SIMA’s safety performance.
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• Ensuring SIMA’s deployments and agreements are transparent, and for now remain in a con-
trolled, closed environment.

Ultimately, given the careful training data selection and constrained deployment environment of
SIMA, we are confident we can maximize the benefits while minimising the ethical risks.

4. Initial results

In this section, we report initial evaluation results of the SIMA agent. After presenting several qualita-
tive examples of the SIMA agent’s capabilities, we start by considering the quantitative performance
of the SIMA agent, broken down by environment and skill category. We then compare these results
with several baselines and ablations, allowing us to assess the generalization capabilities of the agent
and the efficacy of our design choices. Finally, we investigate a subset of evaluation tasks to estimate
human-level performance as an additional comparison.

Qualitative examples To provide a sense of the agent’s general capabilities, Figure 5 displays several
representative examples of the agent in our commercial video game environments. Despite the visual
diversity of the environments, the agent is capable of performing these tasks, demonstrating basic
navigation and tool use skills. Even when the instructed target is not in view (“go to the spaceship”
and “go to the HUB”), the agent is able to find the target. For further qualitative examples, please
refer to the accompanying website.3

4.1. Performance across environments and skills

In Figure 6, we report the average performance of the SIMA agent across the seven environments for
which we have quantitative evaluations. Averages are calculated across multiple episodes per task
(in research environments, one episode per task in video games), multiple tasks per environment,
and across three training runs with different random seeds. Error bars denote the 95% confidence
intervals (CIs) across the tasks within that environment and the three training runs with different
random seeds. We note that developing informative evaluation tasks is in itself an ongoing effort, and
the quantitative results in this work reflect only the range of particular behaviors that are evaluated
at this point in time.

Overall, the results show that the SIMA agent is able to complete a range of tasks across many
environments, but there remains substantial room for improvement. Performance is better for
Playhouse and WorldLab, which are comparatively simpler research environments. For the more
complex commercial video game environments, we see that performance is, understandably, somewhat
lower. Notably, performance on Construction Lab is lower as well, highlighting the relative difficulty
of this research environment and its evaluation tasks. This enables the SIMA platform to serve as a
useful testbed for further development of agents that can connect language to perception and action.

In order to better understand the performance of the SIMA agent across an increasing variety of
simulated environments, we developed an evaluation framework grounded in natural language for
adding and clustering evaluation tasks, as detailed in our evaluation methods. As these skill clusters
are derived from our evaluation tasks rather than the training data, they are similar to, yet distinct
from, those in Figure 3. As shown in Figure 7, performance varies across different skill categories,
including within skill clusters such as “movement” or “game progression”. Note that even seemingly
simple skill clusters can involve nontrivial game interactions, e.g., some of the “look” tasks involve

3https://deepmind.google/discover/blog/sima-generalist-ai-agent-for-3d-virtual-environments/
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Figure 6 | Average Success Rate of the SIMA Agent by Environment. Agents achieve notable success,
but are far from perfect; their success rates vary by environment. Colors indicate the evaluation
method(s) used to assess performance for that environment. (Note that humans would also find some
of these tasks challenging, and thus human-level performance would not be 100%, see Section 4.3.)

skills like steering a spaceship (“look at a planet”) or orienting based on the surrounding terrain
(“look downhill”). While there are many subtleties depending on these additional interactions and the
mechanics of the environment in which the skill is used, in general, skills that require more precise
actions or spatial understanding (“combat”, “use tools”, “build”) tend to be more challenging.

4.2. Evaluating environment generalization & ablations

We compare our main SIMA agent to various baselines and ablations, both in aggregate (Figure 8)
and broken down across our environments (Figure 9). The agents we report across all environments
include:

• SIMA: Our main SIMA agent, which is trained across all environments except for Hydroneer
and Wobbly Life, which we use for qualitative zero-shot evaluation.

• Zero-shot: Separate SIMA agents trained like the main agent, but only on 𝑁 − 1 of our
environments, and evaluated zero-shot on the held-out environment—that is, without any
BC training on it. These agents assess the transfer ability of our agent in a controlled setting.
(Note that these agents use the same pretrained encoders as the main SIMA agent, which were
finetuned on data from a subset of our environments; thus, in some cases the pretrained encoders
will have been tuned with visual inputs from the held-out environment, even though the agent
has not been trained to act in that environment. However, the encoders were not fine-tuned on
data from Goat Simulator 3, thus the transfer results in that case are unconfounded.)

• No pretraining ablation: An agent where we removed the pretrained encoders in the SIMA
agent. We replaced these models with a ResNet vision model that is trained from scratch (as in
Abramson et al., 2022a), as in preliminary experiments we found training the SPARC/Phenaki
encoders through agent training resulted in poor performance. Comparing to this agent tests
the benefits of pretrained models for agent performance.

• No language ablation: An agent that lacks language inputs, during training as well as evaluation.
Comparing to this agent shows the degree to which our agent’s performance can be explained
by simple language-agnostic behavioral priors.

• Environment-specialized: We additionally train an expert agent on each environment, which
is trained only on data corresponding to that environment, but still includes the more broadly
pretrained encoders. We normalize the performance of all other agents by the expert agent on
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Figure 7 | Average Success Rate of the SIMA Agent by Skill Category. Agents exhibit varying
degrees of performance across the diverse skills that we evaluate, performing some skills reliably and
others with more limited success. Skill categories are grouped into clusters (color), which are derived
from our evaluation tasks.

each environment, as a measure of what is possible using our methods and the data we have
for that environment.

Note that due to the number of comparison agents, we only ran a single seed for each, rather
than the three seeds used for the main SIMA agent. Each agent is evaluated after 1.2 million training
steps.4 The bars in Figure 8 and Figure 9 represent average performance (normalized relative to
the environment-specialist); the errorbars are parametric 95%-CIs across tasks and seeds (where
multiple seeds are available).

Figure 8 shows a summary of our results, while Figure 9 shows the results by environment. SIMA
outperforms environment-specialized agents overall (67% average improvement over environment-
specialized agent performance), thus demonstrating positive transfer across environments. We
statistically quantify this benefit by using a permutation test on the mean difference across the
per-task performance of the SIMA agent and the environment-specialized agent within each domain;
in every case SIMA significantly outperforms the environment-specialized agent (𝑝-values on each
environment respectively: 0.001, 0.002, 0.036, 0.0002, 0.008, 0.004, and 0.0002). Furthermore,
SIMA performs much better than the baselines. SIMA substantially outperforms the no-pretraining
baseline overall (permutation test 𝑝 < 0.001), thus showing that internet-scale knowledge supports
grounded learning—though the magnitude and significance of the benefit varies across the environ-
ments (permutation test 𝑝-values respectively 0.0002, 0.14, 0.041, 0.0002, 0.244, 0.052, 0.032).
Finally, the no-language ablation performs very poorly (all permutation tests 𝑝 < 0.001). Importantly,
this demonstrates not only that our agent is in fact using language, but also that our evaluation tasks
are effectively designed to test this capability, rather than being solvable by simply executing plausible
behaviors.

4With one exception: as we had a relatively small quantity of data for Goat Simulator 3, we attempted to prevent the
environment-specialized baseline from overfitting by evaluating it every 200,000 training steps, then selecting the best
performing number of steps, which was 400,000 steps, as our environment-specialized baseline. Although this is a biased
selection process, because we are using the environment-specialized agent as a baseline, it will only lead to underestimating
the advantage of SIMA.
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Figure 8 | Aggregate Relative Performance. Bars indicate the performance of the SIMA agent
as well as the baselines and ablations relative to the performance of the environment-specialized
agents, aggregated equally across environments. The SIMA agent outperforms ablations that do not
incorporate internet pretraining and substantially outperforms an ablation without language. The
solid line shows environment-specialized relative performance, which by normalization is 100%.
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Figure 9 | Per-Environment Relative Performance. Bars indicate the performance of the SIMA agent
as well as the baselines and ablations relative to the performance of the environment-specialized
agents. While performance varies across the environments, the general pattern of results is largely
preserved. Even when trained while holding out an environment and evaluated zero-shot on the
unseen environment, our agent can achieve non-trivial performance—almost always outperforming
the no-language ablation, and in some cases even matching or exceeding environment-specialized
agent performance. The solid line shows the relative performance of an environment-specialized
agent, which by normalization is 100%.
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Figure 10 | Evaluating the Benefit of Classifier-Free Guidance. Comparing the SIMA agent to an
ablation without classifier-free guidance (CFG), CFG substantially improves language conditionality.
However, even without CFG, the agent still exhibits language-conditional behavior, outperforming
the No Language ablation. Note that this evaluation was performed only on a subset of our research
environments: Construction Lab, Playhouse, and WorldLab.

The zero-shot evaluations are also promising. Even when tested in an environment on which it
has not been trained to act the agent demonstrates strong performance on general tasks, though
of course it falls short in achieving environment-specific skills. Zero-shot agents are capable of
performing generic navigation skills that appear across many games (e.g. “go down the hill”), and
show some more complex abilities like grabbing an object by its color, using the fact that color is
consistent across games, and the consistent pattern that most games use left mouse to grab or interact
with objects. Importantly, even on the Goat Simulator 3 environment, where the agents have not
even received visual finetuning, the zero-shot agent still performs comparably to the environment-
specialized one—thus showing transfer is not driven by the visual components alone. Note that even
where the numerical performance of the zero-shot and environment-specialized agents is similar, they
are generally good at different skills—with the environment-specialized agent performing well on
game-specific interactions, but performing more weakly on common skills that are supported across
many games, and that the zero-shot agent therefore can execute.

Note that zero-shot performance is especially strong on the WorldLab environment for three
reasons. First, the evaluation tasks for this environment contain a relatively larger proportion of
domain-general skills, such as recognizing objects by color, because we use them as rapid tests of
agent capabilities. Second, this environment uses the same underlying engine and shares some
implementation details with the other internal research environments, which may support behavioral
transfer despite their varied visual styles, asset libraries, physical mechanics, and environment
affordances. Furthermore, environment-specialized agent performance may be slightly weaker on this
environment because there is a non-trivial distribution shift from training to test. This is because some
of our data comes from earlier versions of the environment with differences in dynamics, and task
distributions. Agents trained across multiple environments may be more robust to this distribution
shift.

Classifier-free guidance Finally, Figure 10 compares the performance of agents with and without
classifier-free guidance (CFG; Lifshitz et al., 2023), evaluated on a subset of our research environments:
Construction Lab, Playhouse, andWorldLab. Without CFG (𝜆 = 0), the SIMA agent performs noticeably
worse. However, the No CFG agent still exhibits a high degree of language conditionality, significantly
outperforming the No Language baseline. These results show the benefit of CFG, highlighting the
impact that inference-time interventions can have on agent controllability.
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Figure 11 | Comparison with Human Performance on No Man’s Sky. Evaluating on a subset of
tasks from No Man’s Sky, human game experts outperform all agents. Yet, humans only achieve 60%
success on this evaluation. This highlights the difficulty of the tasks considered in this project.

4.3. Human comparison

To provide an additional baseline comparison, we evaluated our agents against expert human perfor-
mance on an additional set of tasks from No Man’s Sky, which were chosen to test a focused set of
skills in a diverse range of settings. These tasks range in difficulty, from simple instructions (“walk
forward”) to more complex instructions (“use the analysis visor to identify new animals”). The humans
who performed the tasks were players who participated in our data collection and had experience
with the game. We evaluated human performance using the same judges and evaluation setup that
was used for our agents; the judges were not told that they were evaluating human performance
rather than agents.

Results are summarized in Figure 11 with error bars denoting parametric 95%-CIs. The human
players achieved a success rate of only 60% on these tasks, demonstrating the difficulty of the tasks
we considered in this project and the stringency of our evaluation criteria. For example, some human
failures appear to be due to engaging in unnecessary behaviors before completing the task, like
initially opening and interacting with the starship menu when instructed to “recharge the mining
beam,” or entering analysis mode after scanning when told to “mine oxygen.” Despite these challenging
evaluations, the SIMA agent achieved non-trivial performance (34% success), far exceeding that of
the No Language baseline (11% success), for example. We note that 100% success may not necessarily
be achievable, due to disagreement between human judges on more ambiguous tasks. Nevertheless,
there is still considerable progress needed to match human performance. This underscores the utility
of the entire SIMA setup for providing a challenging, yet informative, metric for assessing grounded
language interactions in embodied agents.

5. Looking ahead

SIMA is a work in progress. In this tech report, we have described our goal and philosophy, and
presented some preliminary results showing our agent’s ability to ground language instructions in
behavior across a variety of rich 3D environments. We see notable performance and early signs of
transfer across environments, as well as zero-shot transfer of basic skills to held-out environments.
Still, many skills and tasks remain out of reach. In our future work, we aim to a) scale to more
environments and datasets by continuing to expand our portfolio of games, environments, and
datasets; b) increase the robustness and controllability of agents; c) leverage increasingly high-quality
pretrained models (Gemini Team et al., 2023); and d) develop more comprehensive and carefully
controlled evaluations.
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We believe that by doing so, we will make SIMA an ideal platform for doing cutting-edge research
on grounding language and pretrained models safely in complex environments, thereby helping to
tackle a fundamental challenge of AGI. Our research also has the potential to enrich the learning
experiences and deployment environments of future foundation models; one of our goals is to ground
the abstract capabilities of large language models in embodied environments. We hope that SIMA
will help us learn how to overcome the fundamental challenge of linking language to perception and
action at scale, and we are excited to share more details about our research in the future.
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